Colette Kress
Executive Vice President and Chief Financial Officer at NVIDIA
Thanks, Simona. Q1 was another record quarter. Revenue of $26 billion was up 18% sequentially and up 262% year-on-year and well above our outlook of $24 billion. Starting with Data Center. Data Center revenue of $22.6 billion was a record, up 23% sequentially and up 427% year-on-year, driven by continued strong demand for the NVIDIA Hopper GPU computing platform. Compute revenue grew more than five times and networking revenue more than three times from last year. Strong sequential data center growth was driven by all customer types, led by enterprise and consumer internet companies. Large cloud providers continue to drive strong growth as they deploy and ramp NVIDIA AI infrastructure at scale and represented the mid-40s as a percentage of our Data Center revenue.
Training and inferencing AI on NVIDIA CUDA is driving meaningful acceleration in cloud rental revenue growth, delivering an immediate and strong return on cloud provider's investment. For every $1 spent on NVIDIA AI infrastructure, cloud providers have an opportunity to earn $5 in GPU instant hosting revenue over four years. NVIDIA's rich software stack and ecosystem and tight integration with cloud providers makes it easy for end customers up and running on NVIDIA GPU instances in the public cloud. For cloud rental customers, NVIDIA GPUs offer the best time to train models, the lowest cost to train models and the lowest cost to inference large language models. For public cloud providers, NVIDIA brings customers to their cloud, driving revenue growth and returns on their infrastructure investments.
Leading LLM companies such as OpenAI, Adept, Anthropic, Character.AI, Cohere, Databricks, DeepMind, Meta, Mistral, xAI, and many others are building on NVIDIA AI in the cloud. Enterprises drove strong sequential growth in Data Center this quarter. We supported Tesla's expansion of their training AI cluster to 35,000 H100 GPUs. Their use of NVIDIA AI infrastructure paved the way for the breakthrough performance of FSD Version 12, their latest autonomous driving software based on Vision. Video Transformers, while consuming significantly more computing, are enabling dramatically better autonomous driving capabilities and propelling significant growth for NVIDIA AI infrastructure across the automotive industry. We expect automotive to be our largest enterprise vertical within Data Center this year, driving a multibillion revenue opportunity across on-prem and cloud consumption.
Consumer Internet companies are also a strong growth vertical. A big highlight this quarter was Meta's announcement of Llama 3, their latest large language model, which was trained on a cluster of 24,000 H100 GPUs. Llama 3 powers Meta AI, a new AI assistant available on Facebook, Instagram, WhatsApp and Messenger. Llama 3 is openly available and has kickstarted a wave of AI development across industries. As generative AI makes its way into more consumer Internet applications, we expect to see continued growth opportunities as inference scales both with model complexity as well as with the number of users and number of queries per user, driving much more demand for AI compute. In our trailing four quarters, we estimate that inference drove about 40% of our Data Center revenue. Both training and inference are growing significantly. Large clusters like the ones built by Meta and Tesla are examples of the essential infrastructure for AI production, what we refer to as AI factories.
These next-generation data centers host advanced full-stack accelerated computing platforms where the data comes in and intelligence comes out. In Q1, we worked with over 100 customers building AI factories ranging in size from hundreds to tens of thousands of GPUs, with some reaching 100,000 GPUs. From a geographic perspective, Data Center revenue continues to diversify as countries around the world invest in Sovereign AI. Sovereign AI refers to a nation's capabilities to produce artificial intelligence using its own infrastructure, data, workforce and business networks. Nations are building up domestic computing capacity through various models. Some are procuring and operating Sovereign AI clouds in collaboration with state-owned telecommunication providers or utilities. Others are sponsoring local cloud partners to provide a shared AI computing platform for public and private sector use.
For example, Japan plans to invest more than $740 million in key digital infrastructure providers, including KDDI, Sakura Internet, and SoftBank to build out the nation's Sovereign AI infrastructure. France-based, Scaleway, a subsidiary of the Iliad Group, is building Europe's most powerful cloud native AI supercomputer. In Italy, Swisscom Group will build the nation's first and most powerful NVIDIA DGX-powered supercomputer to develop the first LLM natively trained in the Italian language. And in Singapore, the National Supercomputer Center is getting upgraded with NVIDIA Hopper GPUs, while Singtel is building NVIDIA's accelerated AI factories across Southeast Asia.
NVIDIA's ability to offer end-to-end compute to networking technologies, full-stack software, AI expertise, and rich ecosystem of partners and customers allows Sovereign AI and regional cloud providers to jumpstart their country's AI ambitions. From nothing the previous year, we believe Sovereign AI revenue can approach the high single-digit billions this year. The importance of AI has caught the attention of every nation. We ramped new products designed specifically for China that don't require an export control license. Our Data Center revenue in China is down significantly from the level prior to the imposition of the new export control restrictions in October. We expect the market in China to remain very competitive going forward.
From a product perspective, the vast majority of compute revenue was driven by our Hopper GPU architecture. Demand for Hopper during the quarter continues to increase. Thanks to CUDA algorithm innovations, we've been able to accelerate LLM inference on H100 by up to three times, which can translate to a three times cost reduction for serving popular models like Llama 3. We started sampling the H200 in Q1 and are currently in production with shipments on track for Q2. The first H200 system was delivered by Jensen to Sam Altman and the team at OpenAI and powered their amazing GPT-4o demos last week. H200 nearly doubles the inference performance of H100, delivering significant value for production deployments.
For example, using Llama 3 with 700 billion parameters, a single NVIDIA HGX H200 server can deliver 24,000 tokens per second, supporting more than 2,400 users at the same time. That means for every $1 spent on NVIDIA HGX H200 servers at current prices per token, an API provider serving Llama 3 tokens can generate $7 in revenue over four years. With ongoing software optimizations, we continue to improve the performance of NVIDIA AI infrastructure for serving AI models. While supply for H100 prove, we are still constrained on H200. At the same time, Blackwell is in full production. We are working to bring up our system and cloud partners for global availability later this year.
Demand for H200 and Blackwell is well ahead of supply and we expect demand may exceed supply well into next year. Grace Hopper Superchip is shipping in volume. Last week at the International Supercomputing Conference, we announced that nine new supercomputers worldwide are using Grace Hopper for a combined 200 exaflops of energy-efficient AI processing power delivered this year. These include the Alps Supercomputer at the Swiss National Supercomputing Center, the fastest AI supercomputer in Europe. Isambard-AI at the University of Bristol in the UK and JUPITER in the Julich Supercomputing Center in Germany. We are seeing an 80% attach rate of Grace Hopper in supercomputing due to its high energy efficiency and performance. We are also proud to see supercomputers powered with Grace Hopper take the number one, the number two, and the number three spots of the most energy-efficient supercomputers in the world.
Strong networking year-on-year growth was driven by InfiniBand. We experienced a modest sequential decline, which was largely due to the timing of supply, with demand well ahead of what we were able to ship. We expect networking to return to sequential growth in Q2. In the first quarter, we started shipping our new Spectrum-X Ethernet networking solution optimized for AI from the ground up. It includes our Spectrum-4 switch, BlueField-3 DPU, and new software technologies to overcome the challenges of AI on Ethernet to deliver 1.6 times higher networking performance for AI processing compared with traditional Ethernet.
Spectrum-X is ramping in volume with multiple customers, including a massive 100,000 GPU cluster. Spectrum-X opens a brand-new market to NVIDIA networking and enables Ethernet only data centers to accommodate large-scale AI. We expect Spectrum-X to jump to a multibillion-dollar product line within a year. At GTC in March, we launched our next-generation AI factory platform, Blackwell. The Blackwell GPU architecture delivers up to four times faster training and 30 times faster inference than the H100 and enables real-time generative AI on trillion-parameter large language models. Blackwell is a giant leap with up to 25 times lower TCO and energy consumption than Hopper. The Blackwell platform includes the fifth-generation NVLink with a multi-GPU spine and new InfiniBand and Ethernet switches, the X800 series designed for a trillion parameter scale AI.
Blackwell is designed to support data centers universally, from hyperscale to enterprise, training to inference, x86 to Grace CPUs, Ethernet to InfiniBand networking, and air cooling to liquid cooling. Blackwell will be available in over 100 OEM and ODM systems at launch, more than double the number of Hopper's launch and representing every major computer maker in the world. This will support fast and broad adoption across the customer types, workloads and data center environments in the first year shipments. Blackwell time-to-market customers include Amazon, Google, Meta, Microsoft, OpenAI, Oracle, Tesla, and xAI.
We announced a new software product with the introduction of NVIDIA Inference Microservices or NIM. NIM provides secure and performance-optimized containers powered by NVIDIA CUDA acceleration in network computing and inference software, including Triton Inference Server and TensorRT LLM with industry-standard APIs for a broad range of use cases, including large language models for text, speech, imaging, vision, robotics, genomics and digital biology. They enable developers to quickly build and deploy generative AI applications using leading models from NVIDIA, AI21, Adept, Cohere, Getty Images, and Shutterstock and open models from Google, Hugging Face, Meta, Microsoft, Mistral AI, Snowflake and Stability AI. NIMs will be offered as part of our NVIDIA AI enterprise software platform for production deployment in the cloud or on-prem.
Moving to gaming and AI PCs. Gaming revenue of $2.65 billion was down 8% sequentially and up 18% year-on-year, consistent with our outlook for a seasonal decline. The GeForce RTX Super GPUs market reception is strong and end demand and channel inventory remained healthy across the product range. From the very start of our AI journey, we equipped GeForce RTX GPUs with CUDA Tensor Cores. Now with over 100 million of an installed base, GeForce RTX GPUs are perfect for gamers, creators, AI enthusiasts and offer unmatched performance for running generative AI applications on PCs. NVIDIA has full technology stack for deploying and running fast and efficient generative AI inference on GeForce RTX PCs. TensorRT LLM now accelerates Microsoft's Phi-3-Mini model and Google's Gemma 2B and 7B models as well as popular AI frameworks, including LangChain and LlamaIndex.
Yesterday, NVIDIA and Microsoft announced AI performance optimizations for Windows to help run LLMs up to three times faster on NVIDIA GeForce RTX AI PCs. And top game developers, including NetEase Games, Tencent and Ubisoft are embracing NVIDIA Avatar Character Engine to create lifelike avatars to transform interactions between gamers and nonplayable characters. Moving to ProVis.
Revenue of $427 million was down 8% sequentially and up 45% year-on-year. We believe generative AI and Omniverse industrial digitalization will drive the next wave of professional visualization growth. At GTC, we announced new Omniverse Cloud APIs to enable developers to integrate Omniverse industrial digital twin and simulation technologies into their applications. Some of the world's largest industrial software makers are adopting these APIs, including ANSYS, Cadence, 3DEXCITE at Dassault Systemes, Brand and Siemens. And developers can use them to stream industrial digital twins with spatial computing devices such as Apple Vision Pro. Omniverse Cloud APIs will be available on Microsoft Azure later this year. Companies are using Omniverse to digitalize their workflows. Omniverse power digital twins enable Wistron, one of our manufacturing partners to reduce end-to-end production cycle times by 50% and defect rates by 40%. And BYD, the world's largest electric vehicle maker, is adopting Omniverse for virtual factory planning and retail configurations.
Moving to automotive. Revenue was $329 million, up 17% sequentially and up 11% year-on-year. Sequential growth was driven by the ramp of AI cockpit solutions with global OEM customers and strength in our self-driving platforms. Year-on-year growth was driven primarily by self-driving. We supported Xiaomi in the successful launch of its first electric vehicle, the SU7 sedan built on the NVIDIA DRIVE Orin, our AI car computer for software-defined AV fleets. We also announced a number of new design wins on NVIDIA DRIVE Thor, the successor to Orin, powered by the new NVIDIA Blackwell architecture with several leading EV makers, including BYD, XPeng, GAC's Aion Hyper and Neuro. DRIVE Thor is slated for production vehicles starting next year.
Okay. Moving to the rest of the P&L. GAAP gross margin expanded sequentially to 78.4% and non-GAAP gross margins to 78.9% on lower inventory targets. As noted last quarter, both Q4 and Q1 benefited from favorable component costs. Sequentially, GAAP operating expenses were up 10% and non-GAAP operating expenses were up 13%, primarily reflecting higher compensation-related costs and increased compute and infrastructure investments. In Q1, we returned $7.8 billion to shareholders in the form of share repurchases and cash dividends. Today, we announced a 10-for-1 split of our shares with June 10th as the first day of trading on a split-adjusted basis. We are also increasing our dividend by 150%. Let me turn to the outlook for the second quarter.
Total revenue is expected to be $28 billion, plus or minus 2%. We expect sequential growth in all market platforms. GAAP and non-GAAP gross margins are expected to be 74.8% and 75.5%, respectively, plus or minus 50 basis points, consistent with our discussion last quarter. For the full year, we expect gross margins to be in the mid-70s percent range. GAAP and non-GAAP operating expenses are expected to be approximately $4 billion and $2.8 billion, respectively. Full year OpEx is expected to grow in the low 40% range.
GAAP and non-GAAP other income and expenses are expected to be an income of approximately -- excuse me, approximately $300 million, excluding gains and losses from nonaffiliated investments. GAAP and non-GAAP tax rates are expected to be 17%, plus or minus 1%, excluding any discrete items. Further financial details are included in the CFO commentary and other information available on our IR website.
I would like to now turn it over to Jensen as he would like to make a few comments.